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ABSTRACT 
 

  The initial perturbations used for the operational global ensemble prediction 

system of the National Centers for Environmental Prediction are generated 

through the breeding method with a regional rescaling mechanism. Limitations of 

the system include the use of a climatologically fixed estimate of the analysis 

error variance and the lack of an orthogonalization in the breeding procedure. 

The ETKF analysis method, as shown by Wang and Bishop, can be used to generate 

ensemble perturbations that can potentially ameliorate these shortcomings. In 

the present paper, the ETKF method is tested in an operational environment, with 

information on the actual distribution and error characteristics of real-time 

observations. The ETKF method is used with the simplex method (ten individual 

perturbations are orthogonalized and centered on the control analysis), and 

compared with the breeding method with five positive-negative pairs of 

perturbations. 

The experimental results show no major difference between the overall 

performances of the two systems. Though the ETKF initial perturbation variance 

is shown to respond to changes in the observational network, with only 10 

perturbations, the ETKF method cannot represent as well the variations on the 

global scale in analysis error variance as the breeding method with geographical 

rescaling. The effective degrees of freedom (EDF) within the subspace of the two 

sets of perturbations is very similar, with the ETKF method producing only 

slightly higher number of EDF. As a new result, it is shown that both the ETKF 

and the bred perturbations exhibit a high degree of continuity in time from one 

cycle to the next, a favorable property in some practical applications. 

Additionally, it was found that while the ETKF perturbations explain better the 

spatio-temporal variations in short range forecast error variance, the error 

covariance structure of such forecasts are better captured by the bred 

perturbations.  How much benefit the ETKF method can provide when using a larger 

than 10-member ensemble will be explored in future experiments. 
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1. Introduction  
 
It is well-known that the weather system is chaotic, and its predictability is 

severely limited by both initial and model-related errors. A feasible way to 

improve a single, deterministic forecast is to use ensemble forecasting. 

Ensemble forecasts start from a set of different states that are sampled from a   

probability density function which is approximated using a finite sample of 

initial perturbations. However, how to best generate these initial perturbations 

for an ensemble forecasting system is still an open question.   

   At the European Center for Medium-Range Weather Forecasts (ECMWF), singular 

vectors (SVs) are used to identify the directions of fastest forecast error 

growth for a finite time period (Buizza and Palmer,1995; Molteni et al. 1996).  

Instead of using SVs, the National Centers for Environmental Prediction (NCEP) 

uses bred vectors (BVs) to sample amplifying analysis errors through breeding 

cycles that are similar to data assimilation cycles (Toth and Kalnay,1993; 

1997). However, both SVs and BVs cannot accurately represent the true 

uncertainties in analysis as a good ensemble forecast system expects. A 

comparison of performance between the ECMWF and NCEP ensemble forecast systems 

was described in Zhu et al. (1996), and a more recent comparison can be found in 

Wei and Toth (2003).  

   Another major method is the perturbed observation (PO) approach developed at 

the Meteorological Service of Canada (MSC) (Houtekamer et al. 1996; Houtekamer 

and Mitchell,1998). The PO approach generates initial conditions by assimilating 

randomly perturbed observations using different models in a number of 

independent cycles. The initial perturbations generated by the PO method are 

more representative of analysis uncertainties in comparison with SVs and BVs.  A 

comprehensive summary of the current methodologies and performance of the three 

ensemble forecast systems from ECMWF, MSC and NCEP can be found in Buizza et al. 

(2005). 
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    In this paper, we explore a method proposed by Wang and Bishop (2003) 

(referred to as WB) to generate the initial perturbations for global ensemble 

forecasts.  The method is based on an Ensemble Transform Kalman Filter (ETKF) 

put forward by Bishop et al. (2001). The ETKF was initially applied to the 

adaptive sampling problem; for example, Majumdar et al. (2001, 2002). Later Wang 

and Bishop (2003) showed how it could be used to generate ensemble perturbations 

without having to perform data assimilation while Etherton and Bishop (2004) 

showed how ETKF ensemble perturbations enabled a highly efficient Hybrid data 

assimilation scheme. As in Wang and Bishop (2003), in this study, the ETKF is 

not used to carry out any data assimilation, although ETKF formulation is 

derived from ensemble Kalman filter theory which is also for data assimilation. 

Here, the ETKF is only used to transform forecast perturbations into analysis 

perturbations in a manner consistent with the Kalman Filter error covariance 

update equation. The ETKF transformation procedure requires as input the 

locations and error covariances of observations. The ETKF cycling procedure is 

similar to breeding cycles in that both schemes create analysis perturbations 

from forecast perturbations. The observational values are used only in computing 

inflation factors for adjusting the magnitudes of analysis perturbations. The 

ETKF analysis perturbations are then added to the analysis field produced by the 

NCEP operational data assimilation system (Parrish and Derber,1992), instead of 

the one that could be produced by ETKF-based data assimilation.  The reason for 

using the NCEP operational analysis field rather than an analysis based on some 

sort of ensemble Kalman filter is because the ETKF and other related ensemble-

based data assimilation schemes (described below) have not yet been proven 

superior to the existing NCEP system. The question of whether such ensemble 

based data assimilation schemes, including ETKF, can generate a good analysis 

with real observations is being pursued by a few major organizations (see 

discussion section). 
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    WB compared the performance of the ETKF and breeding-based ensemble forecast 

systems. They showed that the ETKF ensemble produces better results than the 

breeding method in their experimental setup. However, their experiments were 

conducted in a simplified environment with an idealized observation system. It 

would be very interesting to understand how an ETKF-based ensemble forecast 

system works in an operational environment with real observations. Here are some 

major differences between WB and our experiments: (i), the two models are 

different, our NCEP GFS model has a higher resolution (T126L28) than the WB NCAR 

CCM3 model (T42L18) and we use fewer ensemble members (10) than WB (16). (ii), 

the observations in our case are real-time, at real locations and the number 

varies greatly with time, while WB fixed the number of observations and selected 

the closest model grid points as the observation positions. Thus, the 

observational operator in WB is simplified. In fact, the accurate computation of 

the observational operator is one of the major challenges in an operational data 

assimilation system.  (iii), our observations can be at any level and 

irregularly distributed, while WB’s are assumed to be at only 3 pre-specified 

levels.  (iv), our observational values are real for calculating inflation 

factors, while WB used re-analysis data as observations.  (v), our observation 

errors vary spatially and temporally, while WB computed the RMS with re-analysis 

data as the observational errors. As a matter of fact, WB used only two fixed 

values for temperature and wind observation error variances, respectively.  (vi) 

In WB’s comparison, the magnitude of the initial ensemble spread for the 

breeding and ETKF have similar values on globally averaged basis, whereas the 

current comparison does not satisfy this constraint. 

    Since, in the limit of a very small ensemble (2 members), the ETKF becomes 

equivalent to the breeding technique with no masking, the question of ensemble 

size is critical in any comparison of breeding and ETKF ensemble generation 

techniques. Wang and Bishop’s (2003) experiments showed that an 8 member ETKF 

ensemble was not large enough to resolve geographical fluctuations in 
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observational density. If limited computational resources limited ones ensemble 

size to 8 members then one would have had to apply some sort of masking (Toth 

and Kalnay, 1997) technique to Wang and Bishop’s ETKF perturbations to 

reasonably represent the effect of observational density fluctuations on 

forecast error variance. Wang and Bishop (2003) did not apply masking to their 

perturbations because they found that increasing the ensemble size to 16 members 

was sufficient to crudely resolve the major fluctuations in observational 

density present in their simulated observational network. One of the objectives 

of this paper is to investigate whether a relatively small 10 member ETKF 

ensemble with no masking can outperform a similarly small breeding ensemble with 

masking. The choice of 10 members is motivated by the simple fact that, 

currently, NCEP is running a 10 member operational breeding ensemble.  

   The results from our experiments offer the first test as to how the ensemble 

based Kalman filter works in an environment that is close to operations, with 

real-time observations.  The comparative evaluations of the ETKF and breeding 

methods will include the impact of observations in different spaces, such as 

local, observational, 2-D and 3-D grid point spaces. The amplification factors 

and effective degrees of freedom of the subspaces spanned by the ETKF and 

breeding perturbations are compared. 

    Although the ETKF is not used for data assimilation in this study, the 

method of generating analysis perturbations (not analysis fields) from forecast 

perturbations is based on data assimilation principles. In fact, ETKF is one 

variant of ensemble-based Kalman square-root filters (Tippett et al. 2003). 

Other closely related variants of ensemble-based Kalman filters are the Ensemble 

Adjustment Kalman Filter (EAKF) and Ensemble Square-root Filter (EnSRF) proposed 

by Anderson (2001) and Whitaker and Hamill (2002), respectively.  A local 

Ensemble Kalman Filter (LEKF) was proposed by Ott et al. (2004) (also see 

Szunyogh et al. 2004). All these methods (ETKF, EAKF, EnSR and LEKF) are 

deterministic solutions of ensemble Kalman filters, while the PO method is a 



 7 

stochastic solution (Houtekamer and Mitchell,1998; Burgers et al. 1998). Lorenc 

(2003) has reviewed and compared different ensemble Kalman filters (such as 

ETKF, EAKF, EnSR, and perturbed observation method) and 4D-VAR for data 

assimilation. 

   The paper is organized as follows: Section 2 provides a brief basic 

description of the ETKF formulations. Also in this section, the experimental 

setup is described together with the real-time observation data.  Section 3 

presents the major results from ETKF comparisons with the NCEP operational bred 

perturbation-based ensemble system. This includes the impact of observations 

(including a small number of observations such as from Winter Storm 

Reconnaissance data) on the spread of ensembles, variance distributions, 

effective degrees of freedom of subspaces spanned by the ensemble perturbations 

from both systems, amplification factors and optimally combined orthogonal 

perturbations, and results from comparing ensemble perturbations with forecast 

error patterns and variances including PECA (Perturbation versus Error 

Correlation Analysis).  Discussion and conclusions are given in Section 4.  

 

2. Methodology 

2.1.  Basic formulation. 

The initial perturbations of the NCEP global ensemble forecast system are 

generated by a breeding method.  This method is well established, widely used 

and well documented. The operational implementation at NCEP can be found in Toth 

and Kalnay (1993, 1997).  More results and documents are available at the NECP 

ensemble forecast web site at http://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html. 

   The ETKF formulation (Bishop et al. 2001) is based on the application of a 

Kalman filter, with the forecast and analysis covariance matrices being 

represented by k forecast and k analysis perturbations. It is one of the 

solutions from Kalman filter theory (Anderson 2001; Whitaker and Hamill 2002; 
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Tippett et al. 2003).  More details can be found in Bishop et al. (2001), Wang 

and Bishop (2003), Bishop (2003) and Wang et al. (2004). Let  
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are k  ensemble forecast and analysis perturbations, respectively. In our 

experiments, 
fx is the mean of k  ensemble forecasts and ax  is the analysis from 

the independent NCEP operational data assimilation system. Unless stated 

otherwise, the lower and upper case bold letters will indicate vectors and 

matrices respectively. The nn×  forecast and analysis covariance matrices are 

formed, respectively, as  

      
TaaaTfff ZZPZZP ==     and     ,                                          (2) 

where T  indicates the matrix transpose. For a given set of forecast 

perturbations 
fZ  at time t, the analysis perturbations aZ  can be determined by 

solving the Kalman filter equation 

       fTfTffa HPRHHPHPPP 1)( −+−= ,                                    (3) 

where R  is the pp ×  observational error covariance matrix for p observational 

values that are used in NCEP operational data assimilation system, and H is the 

observational operator mapping the forecast grid point values onto the 

observational points. Let’s define 
ff HZRA 2/1−=  as a kp ×  matrix, so a 

singular value decomposition of 
fA  can be given by  

           Tf CU�A 2/1= .                                                    (4) 

   The ETKF solution is TZZ fa = , where 2/1)( −+= I�CT , C  contains column 

orthonormal right singular vectors ( ic ) and �  is a diagonal matrix containing 

squared singular values ( iλ ) of 
fA ; that is, ].....,,,[ 21 kcccC =  and 
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) ....., ,,( 21 kdiag λλλ=� .  Although the forecast perturbations are, by definition, 

centered about the ensemble mean, i.e. 0.0
1

=�
=

k

i

f
iz , the analysis perturbations 

produced by the ETKF defined above are not centered around the analysis 

( 0.0
1

≠�
=

k

i

a
iz ). A simple transformation that will preserve 

aP  and center the 

analysis perturbations about the analysis is the simplex transformation first 

proposed by Purser (1996) (see also Julier,1998; Julier and Uhlmann,1996; Wang 

et al. 2004). TC  is one of the solutions of this transformation. A proof was 

shown in Wang et al. (2004) Hence, Tfa TCZZ =  will be used as our initial 

analysis perturbations for the next cycle forecasts.  

   Since the number of ensemble members is too small compared with the nominal 

degrees of freedom of model state space and since model error is neglected, the 

analysis error covariance is greatly underestimated by the covariance of the 

transformed ensemble. Therefore, it is necessary to inflate the analysis 

perturbations. The inflation method proposed by Wang and Bishop (2003) assumes 

that the global sum of the squares of the differences between a forecast at time 

t and observations at time t does not depend whether the forecast was 

initialized at 0Z, 6Z, 12Z or 18Z. It also assumes that the number, quality and 

location of observations is similar at 0Z, 6Z, 12Z and 18Z. While none of these 

assumptions are met in an operational system, one of the aims of this paper is 

to see whether the ETKF can outperform breeding even when the method of defining 

the inflation factor is ill-posed. Further details of this inflation procedure 

can be found in Wang et al. (2004). 

 

2.2.  Experimental setup 

Our experiments run from Dec 31, 2002 to Feb. 17, 2003, however, our study will 

focus on the 32-day period from 01/15/2003 to 2/15/2003.  There are 10 ensemble 
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members in both the ETKF and breeding-based systems. The observations used are 

from the conventional data set in the NCEP global data assimilation system. This 

conventional data set contains mostly rawinsonde and various aircraft data, and 

wind data from satellites. Both the ETKF and breeding ensembles are cycled every 

6 hours in accordance with the NCEP data assimilation system, in which new 

observations are assimilated in consecutive 6-hour time windows centered at 00, 

06, 12 and 18 UTC.  This is the only difference between our experimental 

breeding system and the NCEP operational system at the time of the experiments.  

Please note that the operational breeding system at NCEP was later upgraded to a 

6-hour cycle. 

   The number of observations depends on the observation and telecommunication 

procedures and generally changes from one cycle to the next. As an example of 

the data coverage, the distributions of temperature and wind observations at 00Z 

on January 19, 2003 are shown in Figs. 1 and 2, respectively. 

   Fig. 1a shows the horizontal locations of temperature data below 500mb, 

whereas Fig. 1b shows the numbers of temperature observations between different 

vertical levels. For temperature, the data dense regions are North America, 

Western Europe and South-East Asia.  Shown in Figs. 2a and 2b are the 

distributions of wind observations that are influenced by satellite passes over 

different areas. The total numbers of observations over the globe and the 

Southern Hemisphere only, at different cycles for this time period, are shown in 

Figs. 3a and 3b. As usual, the number of observations over the Northern 

Hemisphere is much larger than that over the Southern Hemisphere.  

   In the following two sections, we will present the results as described in 

the Introduction. 

 

3. Results from a comparison between ETKF and breeding ensembles 

3.1. Impact of observations on the ensemble spread 
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One of the main attractions of using ETKF ensemble generation is that it allows 

ensemble variance to reflect the impact of variations in observational density 

on analysis and forecast error variance provided the ensemble is large enough. 

To measure the impact of observations on ensemble variance, we will use a total 

energy measure of ensemble variance. This measure is computed from winds and 

temperature using 

            )],,(),,(),,([
2
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),,( 222 kjiT
T

C
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r

p++= ,                     (8) 

where kji ,,  are indices for horizontal and vertical directions in the grid point 

space; Tvu ,, are the wind components (east-west, north-south) and temperature 

perturbations, respectively; 11   0.1004 −−= KkgJC p  is the specific heat at constant 

pressure for dry air and rT  is the reference temperature, following the 

definition used in Rabier et al. (1996), Wang and Bishop (2003) and Wei and Toth 

(2003). 

   Fig. 4 shows global distributions of the energy spread of analysis 

perturbations and the ratios of the analysis and forecast spread averaged over 

all levels for both ETKF (left panel) and breeding (right panel) ensembles.  For 

the ETKF ensemble (Fig. 4a), the energy spread of analysis perturbations at each 

of these levels (only averaged is shown) in the Northern Hemisphere is generally 

lower than that in the Southern Hemisphere, particularly in the North America 

and Euro-Asia regions, due to the larger number of observations in these regions 

(see Figs. 1 and 2). The lowest energy spread is shown in the tropics where the 

atmosphere is generally more stable. 

    A clearer picture of the impact from observations is given by the ratio of 

the analysis and forecast spread. This is shown in Fig. 4c. This ratio 

represents the rescaling factor from the forecast to analysis spread. In North 

America, Asia and Europe, where there are more data, the rescaling factors are 

low. In the Southern Hemisphere, the values of rescaling factors in the areas 
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which are covered by the satellite data are lower than in the areas which are 

missed by the satellites. The energy spread distributions of analysis 

perturbations from breeding ensembles, shown in Fig. 4b, do not show the 

observation impact because the observations are not used. The rescaling factors 

in breeding are designed empirically from climatology data, with lower scaling 

factors in the North America and Euro-Asia regions where traditionally there are 

more observations. More details can be found in Toth and Kalnay (1993, 1997).  

The rescaling factors in the breeding ensemble are particularly low in North 

America and Europe. One noticeable difference is that the ETKF rescaling factor 

distribution is noisier than that in the breeding ensemble. This noise is 

reminiscent of a similar plot shown in Wang and Bishop (2003) for their 8 member 

ETKF ensemble but not of the plot corresponding to Wang and Bishop’s (2003) 16 

member ETKF ensemble. Thus, the noisiness of this plot suggests that with only 

10 members the ETKF ensemble might benefit from some sort of masking.    

   To see the vertical distributions of energy spread, we average the energy 

spread at all grid points at each level. In Fig. 5a, we show the vertical 

distributions of energy spread for analysis (solid) and forecast (dotted) 

perturbations, and recalling factors (dashed) from both ETKF (thick lines) and 

breeding (thin lines) ensembles. In both ensemble systems, analysis and forecast 

perturbations have relatively larger energy spreads between 600mb and 200mb. 

However, the averaged rescaling factors remain very uniform at all levels. The 

average values of both analysis and forecast perturbation spreads, over all 

levels, are larger in the ETKF ensemble than in the breeding ensemble. They are 

2.172 and 2.222 for ETKF analysis and forecast perturbations, respectively, 

while for the breeding ensemble these values are 1.602 and 1.694.  This may 

contribute to the fact that bred perturbations grow faster than the ETKF 

perturbations in most cases. This will be discussed in detail in the next 

sections.    
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    Fig. 5b shows the energy spread distribution of analysis and forecast 

perturbations along the latitude for both ensemble systems. Unlike the 

distribution in the vertical direction in Fig. 5a, the latitudinal distributions 

of energy spread from the two ensemble systems are quite different.  Generally, 

the ETKF ensemble has a lower energy spread in the tropics, while the breeding 

ensemble has a lower spread mainly in the Southern Hemisphere where the ETKF 

ensemble has larger spread.  

 

3.2.  Impact of WSR data 

Having studied the impact from a large number of observations in the above 

subsection, we will look at any signals from a small number of observations. 

Winter Storm Reconnaissance (WSR) data for a few days will be used to see if 

there is any influence from WSR data.    

   We ran 10 ensemble members at 00Z, 06Z, 12Z and 18Z, the same size as the 

NCEP operational ensemble system at the time of the experiments. To test the 

impact of observations, we re-ran the ETKF experiments with slightly different 

observation data at particular times. In the new experiments, we removed the WSR 

data at 00Z on Jan. 19, 26, 31 and Feb. 01, 03, 08, and 09, 2003. Details about 

2003 WSR data can be found at http://wwwt.emc.ncep.noaa.gov/gmb/targobs/target/ 

wsr2003.html. Each experiment started from the exact same initial conditions as 

the original experiments at the previous cycle (i.e. 6 hours earlier). The new 

analysis perturbations on these 7 days, at 00Z without WSR data, will be 

compared with those with the WSR data. On each day at 00Z, there are about 20 

observations. Thus, in each of the 7 cases, the difference between the 

experiments without and with WSR data will exactly reflect the impact of only 20 

observations. The average results of these 7 cases are shown in Fig. 6.  

    Fig. 6 shows the differences between the two experiments without and with 

WSR data for the vertically-averaged analysis spread for temperature (Fig. 6a) 

and wind (Figs. 6b). The differences of the ratios between analysis and forecast 
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spreads from the two experiments are shown in Figs. 6 (c) and (d) for 

temperature and wind, respectively. The black crosses indicate the locations of 

WSR data. It is clear that when WSR data are removed, analysis perturbations are 

larger over the region that the WSR was taken. Indeed, WSR data reduced ensemble 

analysis variance by 1-2% for these 7 cases with just a 10 member ensemble. 

These results demonstrate how increasing observational density decreases ETKF 

ensemble variance. Note that in some areas outside the WSR data region, 

primarily near equator, there is some noise. Convection near the tropics is more 

active than in other regions, and any differences, including slightly different 

initial conditions, which might come from the global model integration scheme 

will amplify quickly.  

 

3.3.  Variance distribution 

Wang and Bishop’s (2003) results indicated that the ETKF maintains significant 

variance in a substantially larger number of directions than breeding. Here, we 

investigate this hypothesis for the case of a small 10 member ensemble and real-

time observations. 

   The forecast and analysis covariance matrices in normalized observational 

space are 
Tff AA  and 

Taa AA , respectively, where 
aa HZRA 2/1−= , and 

fA  is 

defined in Section 2. The variances in different eigen-directions are 

represented by the corresponding eigenvalues of the covariance matrices. Fig’s 

7a and 7b show the averaged eigenvalues of 
Tff AA (6-hour forecast covariance 

matrix in normalized observational space) over the 32-day test period for the 

ETKF ensemble and breeding ensemble, respectively. In both schemes, there are 

only 9 independent directions out of 10 ensemble members, since the initial 

perturbations are centered around the analysis. 

 Fig’s 7a and b show that, as in Wang and Bishop (2004), the eigenvalue 

spectrum of the ETKF ensemble is significantly flatter than that for the 
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breeding ensemble if all 9 non-zero eigenvalues are considered. However, the 

last four eigenvalues of breeding are close to zero only because, by 

construction, the breeding ensemble is initialized with 5 pairs of identical but 

oppositely signed initial perturbations. As such, it is appropriate to note that 

the 1st and 5th ETKF eigenvalues are respectively 3.26x10^4 and 2.2x10^4, while 

the 1st and 5th eigenvalues of breeding are respectively 4.4x10^4 and 0.8x10^4. 

Hence, even when only the first 5 eigenvalues are considered the eigenvalue 

spectrum of the ETKF is considerably flatter than that of the eigenspectrum from 

the operational breeding scheme.  

   A quantitative measure of the flatness of the spectrum is a measure of the 

degrees of freedom of the subspace spanned by the ensemble perturbations. Here, 

we use the dimension described in Patil et al. (2001). It was called bred 

dimension by Patil et al. (2001), because the authors studied the subspace 

spanned by the bred vectors in their paper. A similar definition was used by 

Bretherton et al. (1999), where it was called the effective number of spatial 

degrees of freedom. Unlike the matrix rank that counts the number of nonzero 

singular values, this measure takes account of the relative values of variance 

in different directions, and removes the ambiguity of small nonzero variances 

due to, say, computing errors.  We believe this definition is useful in 

measuring the dimensions of subspaces spanned by any vectors. If )..... 2, ,1(    kii =z  

are k  ensemble perturbations (either forecast or analysis), the matrix Z  can 

be formed from these perturbations as  

],.....,,[
1

1
21 kk

zzzZ
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= . The singular value decomposition of Z  leads to k  singular 
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paper, we call it the effective degrees of freedom (EDF) of subspace spanned by 

the k  ensemble perturbations )..... 2, ,1(    kii =z . In general, d  is not equal to 

the rank of Z . 

   Fig. 7a shows that the EDF of the subspace spanned by the 10 ETKF ensemble 

forecast perturbations is 8.90, when considering the variation of variances in 

different directions. It should be noted that the rank of the forecast 

covariance matrix is 9 when the relative variance values in different 

directions are not considered. The same time mean variance along different 

directions in the same normalized observational space for bred vectors is also 

computed. This is shown in Fig. 7b. As expected, the variances are 

overwhelmingly on the first 5 bred vectors, and one half of the bred vectors 

have variances close to zero. Hence, the ETKF spectrum is much more evenly 

distributed. The EDF in bred vector space is 5.89, which is much lower than 

that in the ETKF implementation. The main reason for this low dimensionality of 

bred vector space is that, as mentioned earlier, in the NCEP operational 

ensemble forecast system the initial bred vectors are in pairs, i.e. a 

plus/minus strategy was implemented (Toth and Kalnay,1993; 1997). The same 

strategy was employed in the ECMWF ensemble forecast system, where the singular 

vectors are added to the analysis in pairs (Molteni et al. 1996). It is 

expected that the EDF of the subspace spanned by the initial singular vectors 

is also reduced by half. In the rest of the paper when this plus/minus strategy 

has clear artificial influence, we will only show the results from 5 members 

from each system. If we consider only the subspace spanned by the first 5 

directions with the largest variances, the EDFs are 4.97 and 4.56 for the ETKF 

and breeding perturbations, respectively.  Thus, under this measure, the 

difference between the EDFs of the two systems is small. Indeed, in the next 

subsection (d), it is shown that one can find localized regions in grid point 

space where the dimension implied by the leading 5 singular values of the bred 
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vector subspace actually exceeds the dimension implied by the leading five 

singular values of the ETKF subspace. Thus, under Patil et al’s (2001) 

dimension measurement of the flatness of the first 5 eigenvalues of the two 

ensemble covariances the difference in the flatness of the two eigenvalue 

spectrums does not appear to be profound. Nevertheless, the relative steepness 

of the breeding ensembles eigenvalue spectrum over the first 5 eigenvalues 

relative to the ETKF eigenvalue spectrum is not inconsistent with Wang and 

Bishop’s (2004) hypothesis that, as ensemble size is increased, the eigenvalue 

spectrum of the ETKF ensemble will become profoundly flatter than the breeding 

ensemble.  

 

3.4. The effective degrees of freedom of perturbations 

As we have seen from Fig. 7, the effective degrees of freedom of the subspace 

spanned by the 10 bred perturbations are reduced by half at the initial times, 

due to the symmetrical positive/negative pair strategy implemented in the NCEP 

global ensemble forecast system. Therefore, it is not fair to compare the 

effective dimensions of the subspaces spanned by 10 perturbations from the two 

systems. In this subsection, we study the EDF of subspaces spanned by 5 

perturbations, where one is chosen from each pair. 

    The EDFs of subspaces spanned by 5 analysis (solid) and 5 forecast (dotted) 

perturbations in 3-D grid point spaces are shown in Fig. 8a, for both ETKF 

(thick) and breeding (thin), for the same period of time. The values of EDFs for 

5 analysis and forecast perturbations spanned in ETKF are 4.719 and 4.697, 

respectively. For 5 independent breeding perturbations (one from each pair), 

they are 4.596 and 4.609.  It is clear that the EDF from 5 ETKF analysis 

perturbations is only slightly higher than that from 5 independent breeding 

perturbations.  The EDF of 6-hour forecast perturbations is virtually identical 

for the ETKF(4.697) and breeding (4.609).   
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   Since EDF estimates are related to the distribution of variance along various 

directions, it is not surprising that EDF estimates using 3-D grid data are 

similar to those in observational space. For ETKF, the average EDF of 5 analysis 

perturbations is 4.719 in 3-D grid point space, while in observational space the 

EDF is 5.0 (Fig. 7a). The average EDF of 5 forecast perturbations is 4.6797 in 

3-D space, and 4.97 in observation space. Thus, the EDFs of analysis and 

forecast perturbations are reduced by 5.6% and 5.5%, respectively, from 

observation space to 3-D space for ETKF. This implies that the impact of 

observations on perturbations in global 3-D grid point space is significant.  

   For breeding-based ensembles, the EDFs of analysis and forecast perturbations 

in global 3-D space are also comparable to those in observation space (the 

observations are not used at all in this experiment). The average EDFs for 5 

analysis and forecast perturbations are 4.596 and 4.609, respectively. In ETKF, 

the average EDF over 32 days for 6-hour forecast perturbations is slightly 

smaller that for the analysis (Fig. 8a). The situation in the breeding 

experiments is different, with the EDF of subspace spanned by forecast 

perturbations being larger than that for the analysis perturbations. After 6-

hour forecasts, this kind of extreme structure at the initial times, when the 

perturbations are in exactly plus/minus pairs, is destroyed. 

    We also looked at the dimension of subspace spanned by temperature 

perturbations in horizontal 2-dimensional grid point space at each pressure 

level. The EDFs of analysis and forecast perturbation subspaces at different 

pressure levels for the ETKF experiment are displayed in Fig. 8b. As in the 

perturbations in 3-D space, the EDF of 6-hour forecast perturbations is slightly 

smaller than that of analysis perturbations. The highest EDF values are found at 

levels from 500mb to 200mb.  This is due to the fact that there are more 

temperature observations around these pressure levels. For the breeding 

ensembles (Fig. 8b), the difference between EDFs of the analysis and forecast 

perturbations at all levels is similar to that in 3-D grid point space. The EDF 
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values from ETKF ensemble are much larger than the breeding’s at lower levels. 

The difference between EDFs of ETKF and breeding ensembles for either forecast 

or analysis perturbations increases from about 400 mb toward 1000mb level. 

    In the following, we will look at the EDF distributions at grid points for 

different pressure levels. Using the method described by Patil et al. (2001), we 

calculate the EDF of subspaces spanned by 5 analysis perturbations from each 

ensemble that cover only  )12)(12( ++ LL  horizontal grid points, where L  is the 

number of grid points near the central points in each direction.  The EDF value 

from this local subspace is defined as the EDF of the central grid point. The 

EDF distribution at each level can be calculated by moving the central grid 

point.  

   We note that the local EDF depends not only on the number of grid points we 

choose, but also the number of perturbations we use. In our experiments, the 

numbers of perturbations are the same for the two systems. To see the dependency 

of local EDF on the number of grid points, we carry out the experiments for 

15  12,  9,  6,  ,3=L .  The results are shown in Fig. 9. Fig. 9a shows the averaged 

EDF values over all 3-dimensional grid point space for the five experimental 

cases for both ETKF (square) and breeding (diamond) ensembles. For perturbations 

in smaller areas, the ETKF ensemble perturbations have higher degrees of freedom 

than the breeding perturbations, however, the bred perturbations have the 

advantage in larger sized areas. The EDF values for both systems are nearly the 

same when 9=L . 

    If we average the EDF values over horizontal directions only at each level, 

then the vertical distribution of EDF is obtained. This is shown in Fig. 9b, 

with thick lines for ETKF and thin lines for breeding ensembles.  Different line 

styles indicate different cases with different sizes of the small areas that are 

covered by the ensemble perturbations. The local EDFs for 15  12,  9,  6,  ,3=L  are 

displayed in solid, dotted, dashed, dash-dotted and dash-dot-dotted lines, 
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respectively. In general, the local EDF value varies with the geopotential 

height for both ensemble systems. One obvious difference between the two systems 

is that the EDF of the breeding ensemble for last 3 cases with larger local 

areas (thin dashed, dash-dotted and dash-dot-doted lines) varies much less than 

its counterpart in the ETKF ensemble. 

 

3.5.  Amplification of perturbations 

Wang and Bishop’s (2003) results indicated that the growth rate of the most 

rapidly growing linear combination of ETKF perturbations significantly exceeded 

that of the corresponding optimal combination of breeding perturbations. Later 

experiments by Wang showed that the growth rates of perturbations in their 

global model were highly sensitive to the initial amplitude of the 

perturbations. In particular, they found that perturbation growth rate increased 

as the size of initial perturbations was diminished. While in Wang and Bishop 

(2003), the breeding technique was constructed so as to ensure that the breeding 

perturbations had about the same global amplitude as the breeding perturbations, 

in the experiments reported here, the ETKF perturbations have significantly 

larger amplitude than the breeding perturbations (see Fig. 5). Despite this 

discrepancy, it is of interest to compare the growth rates of the two sets of 

ensemble perturbations. In addition, Wang and Bishop (2003) never compared the 

growth rates of individual perturbations from the two systems, but it is of 

considerable interest to measure this growth.  The maximum amplification factor 

from a linear combination of perturbations is calculated using a method similar 

to Wang and Bishop (2003) and Bishop and Toth (1999). 

     Fig. 10 shows the amplification factors (AFs) for different forecast lead 

times averaged from 00Z Jan 15 to 00Z Feb 15, 2003. The AFs are computed for 

both the individual perturbations and optimally combined orthogonal 

perturbations from both ETKF and breeding-based systems. Fig. 10a shows the 

averaged AFs of 500 mb geopotential height perturbations with thick (ETKF) and 
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thin (breeding) lines. The thick solid line is the averaged AF of all 10 

perturbations from the ETKF ensemble, while the thin solid line is the averaged 

AF for all 10 perturbations in the breeding ensemble. It is clear that the 

average AF from individual perturbations in the breeding ensemble is larger than 

that of the ETKF ensemble for short and longer lead times.  We only show results 

out to 2 days, since the calculation of AFs for optimally combined orthogonal 

perturbations assumes the perturbations are linear. 

    Shown by dotted lines in Fig. 10a are the maximum AFs of the optimally 

combined orthogonal perturbations from 5 original perturbations of both systems 

as a function of lead time.  The largest AF of the breeding ensemble is still 

larger than that of the ETKF ensemble for all forecast lead times shown here. To 

see the growth rate of each individual perturbation from the two systems, we 

show the AF for each perturbation at 6- (solid) and 48- (dotted) hour lead times 

in Fig. 10b. At these two lead times, each breeding perturbation has a larger AF 

than the corresponding ETKF perturbation.   

    A likely reason for the bred perturbations to have a larger amplification 

factors than the ETKF perturbations for 500 mb geopotential height is that, as 

mentioned previously, the amplification factor is related to the initial 

perturbation size. The ETKF perturbations have much larger spread at 500 mb 

height (see Fig. 5a) than bred perturbations.  This is also one of the reasons 

that ETKF perturbations have lower AF values, as shown in Fig. 10.  To 

demonstrate this, we compute the AFs of perturbations from both systems for 

different regions.  Fig. 5b shows that the initial spread of ETKF perturbations 

are much larger than bred perturbations in the global and Northern and Southern 

Hemisphere regions, but much smaller in the tropics. We then compare the AF 

values of perturbations from the two systems for 6-hour lead times in these 

different regions. Table 1 lists average AF values of all individual 

perturbations and largest AF from the 5 optimally combined orthogonal 

perturbations for both ensemble systems in all these regions. In the global, 
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Northern and Southern Hemisphere regions where the ETKF ensemble has a larger 

spread, the AFs of bred perturbations are larger.  However, in the tropics where 

the ETKF has a smaller initial spread, the AFs of ETKF perturbations are larger.  

 

3.6.  Representing forecast error covariance  

One measure of the performance of initial perturbations in ensemble forecasting 

is a direct comparison of the ensemble perturbations with the forecast errors. 

In this subsection, we use PECA (Perturbation versus Error Correlation Analysis) 

to study the correlation between ensemble perturbations and forecast errors, as 

described in Wei and Toth (2003).   

    The PECA values for the two ensemble systems (solid for ETKF, dotted for 

breeding) for the global, Northern Hemisphere, Southern Hemisphere and tropical 

regions are displayed in Figs. 11a, b, c, and d, respectively.  As we discussed 

before, only 5 perturbations are used for a fair comparison.  The results for 

all these regions show that for short forecast lead times (6 to 36 hours), bred 

perturbations have higher PECA values than the corresponding ETKF perturbations. 

If we consider data only from every 5th day as independent (not shown), the PECA 

values for the breeding method for the global and Northern Hemisphere domains 

for the 6 and 12-hour lead time ranges are higher than for the ETKF method at 

the 10% (or higher) statistical significance level. The breeding and ETKF 

systems show similar PECA values beyond 24 hour forecast lead time.   

   While PECA values indicate the correlations between ensemble perturbations 

and forecast errors, it is also interesting and important to compare the 

ensemble variance with the forecast variance. To analyze how well the ensemble 

variance can explain the forecast error variance, we follow the method used in 

Majumdar et.al (2001, 2002) and Wang and Bishop (2003). First, we compute the 

ensemble variance and squared error of temperature at each grid point at the 500 

mb pressure level for a 6-hour forecast lead time. A scatter-plot which is not 

shown can then be drawn by using ensemble (abscissa) and squared forecast errors 
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for all the grid points.  We next divide the points into 320 equally populated 

bins in order of increasing ensemble variance. The ensemble and forecast 

variances are then averaged within each bin. It is the averaged values of each 

bin that are plotted (solid) in Fig. 12.  Based on these binned values, we carry 

out a least-square regression and obtain a linear regression line, such as 

bxay += .  This linear regression line is displayed by a dashed line. The 

values of b  are displayed in the figure. If the number of bins is reduced, it 

is expected that the curve will be smoother. Shown by a dotted line is the 

result from 20 bins.  The variance relationship between ensemble and forecast is 

studied for global (top panel), Northern (middle panel) and Southern (bottom 

panel) Hemispheres.  The results for ETKF and breeding ensembles are shown in 

the left and right panels, respectively.   

   For a good ensemble system, the forecast error variances are distributed 

around the ensemble variance. The slope of the linear regression line is close 

to 45 degrees, i.e. the value of b  is close to 1.0.  Note, however, that the 

slope of this line will be highly sensitive to the rescaling/inflation factor 

used to generate the perturbations. Other things being equal, the slope of the 

line can be controlled by changing the amplitude of initial perturbations. For 

the 3 regions (Global, Northern hemisphere, Southern hemisphere) shown here, the 

slopes of the linear regression lines, based on the larger number of binned 

values, are relatively larger in the breeding ensemble than in the ETKF 

ensemble.  This seems related to the fact that the breeding ensemble generally 

has smaller ensemble perturbation magnitudes. The results from 20-bin (dotted 

line) show that the range of forecast error variance (maximum minus minimum 

value) explained by the ensemble variance is larger for ETKF (5.03) than 

breeding (2.77) in the global region (Fig.s 12 (a) and (b)). This shows that the 

ETKF is better than breeding at being able to distinguish times and locations 

where forecast errors are likely to be large from the times and locations where 
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forecast errors are likely to be small. For the other two regions, the ranges of 

forecast variances from ETKF are also slightly larger compared with the breeding 

ensemble.   

 

3.7. Correlation between analysis and forecast perturbations 

In this subsection, we compare each forecast perturbation with the corresponding 

transformed analysis perturbation.  In breeding ensemble, the analysis 

perturbations are scaled from the 6-hour forecast perturbations.  That is, 

)()()( jjj i
f

ii
a zz α= , where )( jiα  is the rescaling factor derived from a mask field 

for ensemble member i  and grid point j  in horizontal space. In the case of a 

single global rescaling factor ( tconsji tan)( =α ) at every cycle, the correlation 

between analysis and forecast perturbations will be 1.0. In this case, the 

spatial and temporal variations of analysis errors are not accounted for. The 

mask used in NCEP ensemble forecast system has been constructed from seasonal 

average of analysis error variances for each month. On each day, the mask is 

obtained through linear interpolation of the monthly values. It is expected that 

the correlation values between i
az  and i

fz  in breeding ensemble will be high. 

   In ETKF theory, the 6-hour forecast perturbations are transformed into 

analysis perturbations based on Kalman filter theory taking the observation 

information into account, such as  

          TfTfa CI�CZTCZZ 2/1)( −+==                                    (9) 

The transformation from forecast to analysis perturbations can be described as 

three steps: First, the forecast perturbations 
fZ are rotated by C ,  they are 

then scaled by 2/1)( −+ I� . Finally they are rotated again by TC  which is a 

simplex transformation.   The main purpose of the simplex transformation is to 

center the transformed perturbations around the analysis field while preserving 

the analysis covariance.  In the first step, the forecast perturbations are 
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rotated into different directions, while the second step only rescales the 

rotated perturbations. It can be expected that without the last step simplex 

transformation TC , the rotated and scaled perturbations would have low 

correlation with the original forecast perturbations depending on how much the 

perturbations are rotated.  However with the simplex transformation, the rotated 

and scaled perturbations are rotated toward the directions that are opposite to 

the first-step rotation by C .  If the eigenvalue distribution �  is completely 

flat, the correlation between 
aZ  and 

fZ  will be 1.0. 

   Shown in Fig. 13 (a) are the averaged correlation values over 10 members 

between forecast and analysis perturbations for ETKF (thin) and breeding (thick) 

ensembles at different times.  The correlation between the forecast and analysis 

perturbations at each level is computed for both ensemble systems. The mean 

correlation over all levels is indicated in solid line. The results show  that 

the mean correlation in ETKF ensemble over different model levels is 

consistently higher than that in breeding ensemble although the mean correlation 

varies with time in both ensemble systems. To see the correlation variation with 

time at different levels, we show the results for levels at 1000mb, 500mb and 

2mb in dotted, dashed and dash-dotted lines respectively.  At different pressure 

levels, the correlation between the corresponding forecast and analysis 

perturbations changes little for ETKF ensemble. However for breeding ensemble, 

the correlation at different levels varies more, particularly at the top model 

level (2mb).   This variation with pressure level can be seen more clearly from 

Fig. 16 (b) which shows the vertical distribution of averaged correlation over 

time period from Jan 15 to Feb 15 2003.  The averaged correlation over the 

experimental period is almost constant at different pressure levels for ETKF 

ensemble, while the breeding ensemble shows larger variation at different 

levels. 
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   The main reason for this extremely high correlation between analysis and 

forecast perturbations in ETKF is the simplex transformation. Equation (9) shows 

that the correlation in ETKF ensemble is also influenced by the eigenvalue 

distribution � .  The eigenvalue distribution is determined by the number and 

location of observations and the number of ensemble members.  In our experiment, 

the eigenvalue distribution of forecast covariance matrix in the normalized 

observational space is shown in diamond in Fig. 7(a). The effective degree of 

freedom is 8.9 out of 9 independent forecast perturbations. The variances are 

quite evenly distributed in different directions. The correlation between 

analysis and forecast perturbations in ETKF ensemble is changed little by this 

distribution. We notice that WB also showed a similar variance distribution in 

their model with ideal observations. We can reasonably expect that the analysis 

perturbations in most ETKF ensembles with simplex transformation have high 

correlation values with the forecast perturbations although the exact influence 

from the observations and the number of ensembles is hard to know. 

    There are some ensemble forecasting systems that require high correlation 

between analysis and forecast perturbations, such as ensemble systems for 

forecasting ocean waves and other hydrological systems. Higher correlation 

indicates more time continuity between the perturbations at different cycles.  

This nice feature makes ETKF based ensemble system particularly appealing. 

 

4. Discussion and conclusions 

In this paper, we have carried out experiments with two ensemble forecast 

systems based on two different techniques for generating initial perturbations: 

ETKF and breeding.  Results are presented for a 32-day experimental period using 

the NCEP operational analysis/forecast system, and focusing on the 

characteristics of analysis and short range forecast perturbations. The purpose 

of this comparison between the ETKF and breeding ensembles is to see if the 
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ETKF-generated initial perturbations are more responsive to observation 

distributions and representative of the analysis uncertainties, and whether the 

performance can be improved.  

    The detailed properties of ETKF-generated perturbations are thoroughly 

studied from various aspects, such as the effective degrees of freedom of 

subspaces spanned by perturbations in local, observational, global 2-D and 3-D 

grid point spaces, optimally combined orthogonal perturbations with the largest 

amplification factors. The relative strengths and weaknesses of the two systems 

are discussed and identified. The results presented in this paper for the first 

time offer a valuable, comprehensive description of the performance of an ETKF-

based ensemble forecast system under a real-time observation environment. The 

paper can be a useful reference for scientists who intend to use any ensemble-

based Kalman filter to develop an ensemble forecast or ensemble-based data 

assimilation system in an operational environment. 

    The findings from our experiments are summarized as follows: 

� The ETKF method is shown to produce initial perturbations whose variance, 

as desired, is influenced by variations in data coverage. 

This is in contrast to some of current operational techniques such as the 

breeding technique at NCEP and the SV technique, although other techniques, such 

as the PO method used at MSC, are expected to produce more similar results.  The 

ETKF is capable of picking up the impact from very small number of observations 

as shown in Section 3b. 

� While the slope of the eigenvalue spectrum of the breeding ensemble 

covariance matrix is clearly steeper than that of the corresponding ETKF 

eigenvalue spectrum, the effective degrees of freedom of a subspace 

spanned by 5 bred perturbations (one from each pair) is very similar to 

that of a subspace spanned by 5 ETKF perturbations. 

� In general, the growth rates of ETKF and bred perturbations are similar.  
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A good ensemble forecast system requires that the initial perturbations grow 

reasonably fast enough to match the growth rates of forecast errors. In our 

experiments, bred perturbations have larger amplification factors over the 

Northern and Southern extra-tropics than ETKF perturbations, while it is ETKF 

perturbations that have higher amplification factors in the tropics (see Table 

1). This may be explained by the fact that the breeding perturbations are 

generally smaller than the ETKF perturbations everywhere except the tropics. 

Both systems are based on the same concept of letting cycled perturbations 

reflect the dynamics of error growth due to initial errors in analysis cycles. 

� The scatter plots of ensemble and forecast variances from all grid points 

show that the ETKF ensemble distinguishes a larger range of forecast 

variances.   

� PECA calculations indicate that bred perturbations explain a larger 

portion of short range forecast errors than ETKF for the regions we have 

tested. For longer lead times from 2 days onward, both systems show 

similar PECA values. 

PECA values quantitatively measure how well the ensemble perturbations match the 

forecast errors.  For longer forecast lead times any perturbations including, 

ETKF ensemble perturbations, will turn toward the leading Lyapunov vector which 

is linked to the bred vector. 

� Both systems produce temporally consistent perturbation fields. 

It is found that ETKF analysis perturbations have a very high correlation with 

forecast perturbations before the ETKF transformation. The correlation between 

ETKF analysis and forecast perturbations is even slightly higher than that in a 

breeding system with regional rescaling. This surprising, but good feature of 

ETKF perturbations is due to the simplex transformation imposed. 

   We note that the above findings are from the experiments we have carried out 

so far.  There are still some clear limitations in our study, such as: 
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1. Only 5 perturbations are used to compute the effective degrees of freedom 

of the subspace spanned by each system in order to have a fair comparison.  

This is mainly due to the fact that there are only 10 members in NCEP 

operational ensemble forecast system and perturbations are in 

positive/negative pairs. This small number of ensemble members may be a 

disadvantage for the ETKF based ensemble.  The performance of ETKF 

ensemble should be greatly improved if the number of ensemble members is 

increased. 

2. Only the so-called `conventional data’ from the NCEP operational data 

assimilation system have been used. There are a lot more satellite data 

that have not been used. To include those, more work would be needed. 

3. One should note that the number of ensemble members is too small compared 

with the model state space. Projecting the variances from a large state 

space onto such a small subspace spanned by the ensemble is a 

simplification. For a given number of ensembles, it is important to 

inflate the analysis perturbations properly.  The inflation strategy we 

used needs to be improved for system with real-time observations. At 

present, how to correctly inflate the analysis variances remains a 

challenging research issue for the ensemble Kalman filter research 

community. To avoid the ill-posed inflation factor for the ETKF experiment 

we conducted, one simple way is to  inflate the ETKF initial perturbations 

so that on globally averaged basis the initial ensemble variance of the 

ETKF is similar to that of the operational breeding. Alternatively, to 

handle the problem of varying number of observations, instead of using 

just the current observations we can also try to use previous two weeks' 

observations and follow the similar steps in Wang and Bishop (2003) to get 

the inflation factor.  Future work will be done on these experiments. 

4. The ETKF analysis uncertainty estimate is not fully consistent with the 

NCEP operational 3-D VAR analysis uncertainty. The main difference between 
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the ETKF and NCEP 3D-Var operational data assimilation system is that the 

background covariance in ETKF is represented by ensemble perturbations, 

while in 3D-Var it is generated by the NMC method (Parrish and Derber, 

1992). It is expected that the background covariance matrix produced by 

the NMC method is more isotropic than that generated by the ensembles.  

This is particularly true for our small number of ensemble members.  There 

are two ways of avoiding this.  First, you can use ensemble based data 

assimilation. As described in the Introduction, ETKF, EAKF, EnSR and LEKF 

all are ensemble-based Kalman filters.  A major inter-comparison project 

has been initiated recently at NCEP in cooperation with the people who 

derived and formulated these filters at the NOAA Climate Diagnostics 

Center (NOAA CDC), University of Maryland and National Center for 

Atmospheric Research (NCAR) (Toth et al. 2004). This project is supported 

by THORPEX (see http://box.mmm.ucar.edu/uswrp). The goal of this project 

is to compare the performance of each of these ensemble-based data 

assimilation schemes in an environment with real operational (and more 

sophisticated) models and data. The results will be compared with the 

benchmark NCEP operational data assimilation system.  Second, you can get 

the analysis uncertainty information from 3D/4D Var and feed it into the 

ensemble forecast system. We plan to explore this with respect to breeding 

techniques in the future. Orthogonalization and simplex transformations 

can be used to restrain initial perturbation variance. The results will be 

compared with 40-member ETKF. 
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Table 1.  Amplification factors of 500mb geopotential height 

 at 6-hour forecast lead time 

Ave amplification factor for all individual perturbations 

 GL TR NH SH 

Breeding 1.112 1.282 1.105 1.103 

ETKF 1.091 1.621 1.096 1.082 

Max amplification from 5 optimal perturbations 

 GL TR NH SH 

Breeding 1.199 1.821 1.194 1.190 

ETKF 1.140 2.061 1.158 1.151 
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Figure Captions 

   Fig. 1.  Temperature observation distributions at 00Z January 19, 2003. (a) 

the horizontal distribution of data below 500mb; (b) the vertical distribution. 

   Fig. 2.  As in Fig.1, but for wind. 

   Fig. 3. The number of observations at different cycles during the 

experimental period (a) over the globe; (b) over the Southern Hemisphere only. 

   Fig. 4.  Vertically averaged global distribution of energy spread of analysis 

perturbations and the ratios of the analysis and forecast spread, for both ETKF 

and breeding ensembles with (a) energy spread of ETKF; (b) energy spread of 

breeding ensemble; (c) ratio of analysis spread/forecast spread for ETKF; and 

(d) ratio of analysis spread/forecast spread for breeding ensemble. 

   Fig. 5.  Energy spread distributions of ETKF (thick) and breeding (thin) 

ensemble perturbations (solid: analysis; dotted: forecast). The ratio of 

analysis/forecast perturbations is indicated by the dashed line. All the values 

are averaged over the period 01/15 - 02/15, 2003, with (a) vertical distribution 

as a function of pressure; (b) distribution by latitude. 

   Fig. 6.  The difference of vertically averaged analysis spread for  (a) 

temperature and (b) wind, between two experiments with and without WSR data. The 

difference in analysis/forecast spread for (c) temperature and (d) wind, between 

the same two experiments.  

   Fig. 7.  The averaged variance distributions along different eigen-directions 

of forecast (diamond) and analysis (square) covariance matrices in the 

normalized observational space, for the: (a) ETKF ensemble; (b) breeding 

ensemble. 

   Fig. 8. The effective degrees of freedom of subspace spanned by 5 temperature 

perturbations (solid: 5 analysis perturbations; dotted: 5 forecast 

perturbations) from ETKF (thick) and breeding (thin) ensembles for: (a) EDF of 

subspace spanned by temperature perturbations in 3-dimensional grid point space, 

at different cycles during the experimental period; (b) EDF of subspace spanned 
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by 5 temperature perturbations in 2-dimensional grid point space at each 

pressure level.  

   Fig. 9. Local EDF for different number of grid points for: (a)  averaged 

local EDF as a function of L, which is described in the text; and (b)  local EDF 

at each pressure level. 

   Fig. 10.  Amplification factors of ensemble perturbations for: (a)  the 

averaged AF from 10 individual perturbations as a function of lead time (solid) 

and the maximum AF of optimally combined orthogonal perturbations from 5 

original perturbations (dotted) (The results from ETKF and breeding ensembles 

are indicated by thick and thin lines respectively); and (b) the AF of 10 

individual perturbations for two forecast lead times (solid: 6-hour, dotted: 48-

hour), where the ETKF and breeding ensembles are indicated by triangles and 

diamonds, respectively. 

   Fig. 11. The PECA values for ETKF (solid) and breeding (dotted) ensembles 

from 5 perturbations only. Shown in thick and thin lines are PECA from 5 

optimally combined perturbations and the average PECA from 5 individual 

perturbations.  

   Fig. 12. Derived ensemble variance and forecast error variances at all grid 

points for 500mb temperature, for ETKF (left panel) and breeding (right panel); 

for global (top), Northern (middle) and Southern (bottom) Hemisphere regions. 

The average value from each of 320 bins is indicated by solid lines. Dotted 

lines show the results from 20 bins only. The linear regression line from 320 

bins is displayed by a dashed line.    

   Fig. 13.  Averaged correlation over 10 members between forecast and analysis 

perturbations for ETKF (thin) and breeding (thick) ensembles. (a) correlation as 

a function of time. The mean correlation over all levels, correlations at levels 

1000mb, 500mb and 2mb are shown in solid, dotted, dashed and dash-dotted lines 

respectively. (b) vertical correlation distribution averaged over time.  
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Fig. 1.  Temperature observation distributions at 00Z January 19, 2003. (a) the      

horizontal distributions of data below 500mb; (b) the vertical distribution. 
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                      Fig. 2.  As in Fig.1, but for wind. 
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Fig. 3. The number of observations at different cycles during the experimental 

period (a) over the globe; (b) over the Southern Hemisphere only. 
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Fig. 4.  Vertically averaged global distribution of energy spread of analysis 

perturbations and the ratios of the analysis and forecast spread for both ETKF 

and  breeding ensembles with (a) energy spread of ETKF; (b) energy spread of 

breeding; (c) ratio of analysis spread/forecast spread for ETKF; (d) ratio of 

analysis spread/forecast spread for breeding ensemble. 
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Fig. 5.  Energy spread distributions of ETKF (thick) and breeding (thin) 

ensemble perturbations (solid: analysis; dotted: forecast). The ratio of    

analysis/forecast perturbations is indicated by the dashed line. All the values  

are averaged over the period 01/15-02/15/2003, with (a) vertical distribution 

as a function of pressure; (b) distribution by latitude. 
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Fig. 6.  The difference of vertically averaged analysis spread for (a) 

temperature and (b) wind, between two experiments with and without WSR data. 

The difference of analysis/forecast spread for (c) temperature and (d) wind,       

between the same two experiments.  
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Fig. 7.  The averaged variance distributions along different eigen-directions 

of forecast (diamond) and analysis (square) covariance matrices in the 

normalized observational space, for the: (a) ETKF ensemble; (b) breeding 

ensemble. 



 44 

 

Fig. 8. The effective degrees of freedom of subspace spanned by 5 temperature 

perturbations (solid: 5 analysis perturbations; dotted: 5 forecast   

perturbations) from ETKF (thick) and breeding (thin) ensembles for: (a) EDF of 

subspace spanned by temperature perturbations in 3-dimensional grid point  

space, at different cycles during the period of experiments; (b) EDF of 

subspace spanned by 5 temperature perturbations in 2-dimensional grid point 

space at each pressure level.  
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Fig. 9. Local EDF for different number of grid points for: (a)  averaged local 

EDF as a function of L which is described in the text; and (b)  local EDF at 

each  pressure level. 
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Fig. 10.  Amplification factors of ensemble perturbations for: (a) the averaged   

AF from 10 individual perturbations as a function of lead time (solid) and the    

maximum AF of optimally combined orthogonal perturbations from 5 original    

perturbations (dotted). (The results from ETKF and breeding ensembles are 

indicated by thick and thin lines respectively); and (b) the AF of 10 

individual perturbations for forecast 2 lead times (solid: 6-hour, dotted: 48-

hour), where the ETKF and breeding ensembles are indicated by triangles and 

diamonds, respectively. 
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Fig. 11. The PECA values for ETKF (solid) and breeding (dotted) ensembles from 

5 perturbations only. Shown in thick and thin lines are PECA from 5 optimally 

combined perturbations and average PECA from 5 individual perturbations.   
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Fig. 12. Derived ensemble variance and forecast error variances at all grid 

points for 500mb temperature, for ETKF (left panel) and breeding (right panel); 

for global (top), Northern (middle) and Southern (bottom) Hemisphere regions. 

The average value from each of 320 bins is indicated by solid lines. Dotted 

lines show the results from 20 bins only. The linear regression line from 320 

bins is displayed by a dashed line.    
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Fig. 13.  Averaged correlation over 10 members between forecast and analysis 

perturbations for ETKF (thin) and breeding (thick) ensembles. (a) correlation 

as a function of time. The mean correlation over all levels, correlations at 

levels 1000mb, 500mb and 2mb are shown in solid, dotted, dashed and dash-dotted 

lines respectively. (b) vertical correlation distribution averaged over time.  


